Homochoric#

class orix.vector.Homochoric(data=None)[source]#

Bases: NeoEuler

Equal-volume mapping of the unit quaternion hemisphere.

The homochoric vector representing a rotation with rotation angle \(\theta\) has magnitude \(\left[\frac{3}{4}(\theta - \sin\theta)\right]^{\frac{1}{3}}\).

Notes

The homochoric transformation has no analytical inverse.

Attributes

Homochoric.angle

Calling this attribute raises an error since it cannot be determined analytically.

Methods

Homochoric.from_rotation(rotation)

Create an homochoric vector from a rotation.