# Plot symmetry operations#

This example shows how to draw proper symmetry operations $$s$$ (no reflections or inversions).

import matplotlib.pyplot as plt

from orix import plot
from orix.vector import Vector3d

marker_size = 200
fig, (ax0, ax1) = plt.subplots(
ncols=2,
subplot_kw={"projection": "stereographic"},
layout="tight",
)

# 4-fold (outer markers will be clipped a bit...)
v4fold = Vector3d([[0, 0, 1], [1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0]])
ax0.symmetry_marker(v4fold, fold=4, c="C4", s=marker_size)
ax0.draw_circle(v4fold, color="C4")
# 3-fold
v3fold = Vector3d([[1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1]])
ax0.symmetry_marker(v3fold, fold=3, c="C3", s=marker_size)
ax0.draw_circle(v3fold, color="C3")
# 2-fold
# fmt: off
v2fold = Vector3d(
[
[ 1,  0, 1],
[ 0,  1, 1],
[-1,  0, 1],
[ 0, -1, 1],
[ 1,  1, 0],
[-1, -1, 0],
[-1,  1, 0],
[ 1, -1, 0],
]
)
# fmt: on
ax0.symmetry_marker(v2fold, fold=2, c="C2", s=marker_size)
ax0.draw_circle(v2fold, color="C2")

# 2-fold
v2fold = Vector3d([[0, 0, 1], [1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0]])
ax1.symmetry_marker(v2fold, fold=2, c="C2", s=2 * marker_size)
ax1.draw_circle(v2fold, color="C2")


Total running time of the script: (0 minutes 0.707 seconds)

Estimated memory usage: 9 MB

Gallery generated by Sphinx-Gallery